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ABSTRACT

Alzheimer disease (AD), the most common cause of dementia, is a progressive disorder involving cognitive impairment, loss of learning and memory,
and neurodegeneration affecting wide areas of the cerebral cortex and hippocampus. AD is characterized by altered lipid metabolism in the brain.
Lower concentrations of long-chain PUFAs have been described in the frontal cortex, entorhinal cortex, and hippocampus in the brain in AD. The
brain can synthesize only a few fatty acids; thus, most fatty acids must enter the brain from the blood. Recent studies show that PUFAs such as
DHA (22:6) are transported across the blood–brain barrier (BBB) in the form of lysophosphatidylcholine (LPC) via a specific LPC receptor at the BBB
known as the sodium-dependent LPC symporter 1 (MFSD2A). Higher dietary PUFA intake is associated with decreased risk of cognitive decline and
dementia in observational studies; however, PUFA supplementation, with fatty acids esterified in triacylglycerols did not prevent cognitive decline
in clinical trials. Recent studies show that LPC is the preferred carrier of PUFAs across the BBB into the brain. An insufficient pool of circulating LPC
containing long-chain fatty acids could potentially limit the supply of long-chain fatty acids to the brain, including PUFAs such as DHA, and play
a role in the pathobiology of AD. Whether adults with low serum LPC concentrations are at greater risk of developing cognitive decline and AD
remains a major gap in knowledge. Preventing and treating cognitive decline and the development of AD remain a major challenge. The LPC
pathway is a promising area for future investigators to identify modifiable risk factors for AD. Adv Nutr 2020;11:760–772.
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Introduction
Alzheimer disease (AD) is a progressive degenerative brain
disease and the most common cause of dementia, account-
ing for approximately two-thirds of the estimated 40–50
million people living with dementia worldwide (1, 2). The
characteristic symptoms of dementia are difficulties with
memory, language, problem-solving, and other cognitive
skills (3). The average duration of AD is 8–10 y, but the
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clinical phase of AD is preceded by a long preclinical phase,
which may extend over 2 decades (4). The pathology of
AD is characterized by accumulation of amyloid β peptide
and microtubule-associated protein τ , brain region–specific
decline in glucose metabolism, and altered mitochondrial
dynamics and function (4, 5). There is increasing evidence
that AD is a multifactorial and heterogeneous disease with
multiple contributors, including cerebrovascular disease (6–
10). There is currently no therapeutic intervention to prevent
cognitive decline and the development of AD.

Altered lipid metabolism in the brain is characteristic of
AD (11–15). The brain is the second most lipid-rich organ
in the body, after adipose tissue. Instead of being used for
energy storage, brain lipids are critical building blocks for the
cell membranes of neurons, astrocytes, and myelin sheaths of
oligodendrocytes. Lipids account for half of the dry matter of
the brain (13). The brain can synthesize only a few fatty acids;
thus, most fatty acids must enter the brain from the blood
across the blood–brain barrier (BBB) (16). Over one-third of
brain lipids are long-chain PUFAs (17). DHA (22:6), an ω-
3 PUFA, constitutes about half of the PUFA content of the
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FIGURE 1 Examples of LPC species, showing fatty acid chains in the sn-1 position. LPC, lysophosphatidylcholine.

brain (17) and must be obtained from the circulation, since
synthesis of DHA in the brain is negligible (17). Lower DHA
concentrations have been described in regions of the brain
most affected by AD (18–25).

Cholesterol and nearly all lipoproteins cannot cross the
BBB under normal physiological conditions (16, 26–29).
There are at least 2 pools by which plasma fatty acids supply
the brain: free (nonesterified) and esterified in the form
of lysophosphatidylcholine (LPC). Since the 1990s, studies
showed that fatty acids bound to LPCs are more efficiently
transported across the BBB into the brain than free fatty acids
(30–33); however, the biological mechanism was not clear.
In 2014, Nguyen and colleagues (28) discovered that major
facilitator superfamily domain-containing 2A (MFSD2A), an
orphan transporter, now known as sodium-dependent LPC
symporter 1, is a specific receptor for LPC. LPCs transport
long-chain fatty acids such as DHA across the BBB (28).

The aim of this Perspective is to present the potential
role of circulating LPCs in the pathobiology of AD. I
will review the structure of LPC, the main pathways in
LPC metabolism, biological functions of LPC, emerging
knowledge of MFSD2A, and transport of long-chain fatty
acids across the BBB, and how these new findings relate to
observations from epidemiological, clinical, and pathological
studies of AD. Of the PUFAs, the emphasis is placed on
DHA, as this PUFA has been the main fatty acid that has
been studied in relation to LPC metabolism and AD. The
biological pathways involving LPC are potentially amenable
to intervention.

Current Status of Knowledge
Metabolism of LPC: how does it affect PUFA
bioavailability?
Chemistry, digestion, and absorption of LPC.
The chemical structure of LPC is a phosphocholine head-
group and glycerol backbone linked to a variable fatty acid
bound at either the sn-1 or sn-2 position (Figure 1). In
tissues and plasma, PUFAs are predominantly bound at the
sn-2 position in LPC, whereas SFAs are mostly bound at
the sn-1 position (29). The metabolic pathways by which
DHA in the diet enters the pool of circulating LPC that
is available for transport across the BBB by MFSD2A are
shown in Figure 2. Seafood and fish are the major dietary
source of DHA, especially cold-water fatty fish such as
salmon, herring, tuna, anchovies, and sardines (30). A large

portion of ω-3 PUFAs in fish muscle is esterified in LPC
and in phosphatidylcholine (31–33). In phosphatidylcholine
occurring in fish and seafood, DHA is predominantly found
in the sn-2 position, but in roe (34) and krill (35), a small
portion of DHA has been described in the sn-1 position.
The position of DHA at either the sn-1 or sn-2 position of
phosphatidylcholine in food or supplements is relevant to
the metabolism of DHA. In the proximal intestinal lumen,
pancreatic phospholipase A2 catalyzes the hydrolysis of the
ester bond at the sn-2 position of phospholipids to yield
free fatty acids and sn-1 LPC (36) (Figure 2). LPCs in
the lumen are then absorbed into enterocytes by simple
diffusion and enter the portal circulation (36, 37). In the
liver, some LPCs are re-esterified to phosphatidylcholine by
LPC acyltransferase (LPCAT) 3 (LPCAT3) (38). Some of the
phosphatidylcholine that is esterified with DHA is remodeled
in the liver and secreted into blood as LPC with DHA at the
sn-2 position (39). Small amounts of LPC with DHA at the
sn-2 position can also be formed from triacyglycerols (TGs),
but the conversion is not efficient (39).

LPC in the circulation.
Albumin is the primary transporter of LPC in plasma (40),
with a smaller amount of LPCs transported by lipoproteins
(41) and α1-acid glycoprotein (42). Total LPCs circulate
in the 100–300-μM range in plasma. The most abundant
LPCs in human plasma are LPC palmitate (16:0), LPC
stearate (18:0), LPC oleate (18:1), LPC linoleate (18:2), and
LPC eicosatetraenoate (20:4), and other species include LPC
eicosapentaenoate (20:5) and LPC docosahexaenoate (22:6;
DHA) (41). The distribution of LPC species in human
serum is shown in Figure 3. The sources of LPCs in
human plasma include LPC directly absorbed from the diet
(28, 39, 43), LPC generated by phospholipase A2 (PLA2)
activity on phosphatidylcholine during digestion and then
absorbed in the gut, LPC generated by PLA2 activity on
phosphatidylcholine in membranes (Lands’ cycle) (44), and
phospholipase A1 (PLA1) activity on phosphatidylcholine
in the liver (45, 46). Endothelial lipase cleaves fatty acids
from HDL phosphatidylcholine at the sn-1 position (47),
generating LPC with a fatty acid at the sn-2 position. The
fatty acid is then released from LPC through lysophospho-
lipase activity of endothelial lipase (47). Lecithin-cholesterol
acyltransferase can also generate LPC by deacylation of phos-
phatidylcholines primarily at sn-2 on the surface of HDL (48).
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FIGURE 2 Metabolic pathway of LPC from the diet to the brain, with an emphasis on LPC-DHA because of the importance of DHA in the
brain (17). Dietary sources of DHA are seafood and fish, which contain DHA esterified in LPC (31–33) or in PC. PCs in the diet generally have
saturated fatty acids esterified in the sn-1 position and PUFAs such as DHA in the sn-2 position (39). During digestion, PLA2 cleaves fatty
acids from the sn-2 position of PC in the gut, generating LPC with fatty acids at the sn-1 position. LPC-DHA is absorbed by diffusion across
enterocytes, circulates in the blood, and is transported by MFSD2A across the blood–brain barrier. MFSD2A transports LPCs with fatty
acids at either sn-1 or sn-2 with equal efficiency into the brain (49). Through the Lands’ cycle, LPC-DHA is remodeled in brain membranes
as PC via LPCAT or converted back to LPC via PLA2. LPC-DHA can be converted to LPA by ATX, with DHA becoming incorporated in
cardiolipin in mitochondrial membranes. LPA can bind to specific G protein–coupled receptors. Some LPC-DHA is generated by PLA1 on
PCs in the liver, but the conversion is not efficient (39). ATX, autotaxin; CoA-SH, coenzyme A; LPA, lysophosphatidic acid; LPC,
lysophosphatidylcholine; LPCAT, LPC acyltransferase; MFSD2A, sodium-dependent LPC symporter 1; PC, phosphatidylcholine; PLA1,
phospholipase A1; PLA2, phospholipase A2.

LPC and fatty acid transport into the brain via MFSD2A.
In 2008, MFSD2A was originally described as a member of
the major facilitator domain-controlling family of membrane
proteins and an orphan transporter. During feed deprivation
in mice, MFDS2A was induced in liver and brown adipose
tissue (50). Observations in Mfsd2a knockout mice suggested
that MFSD2A was a nutritionally regulated gene that played a
role in growth and lipid metabolism (51). Although MFSD2A
is ubiquitously expressed in brain and was considered to
play an important role in brain functioning, no ligand
for the receptor was identified at the time (51). In 2014,
Nguyen and colleagues (28) demonstrated that MFSD2A
is a transporter of long-chain fatty acids across the BBB
that are esterified to LPC. MFSD2A is a transmembrane
protein located exclusively on the luminal membrane of
endothelial cells that line the blood vessels in the brain
(28, 52). MFSD2A transports LPCs with fatty acids that
contain ≥14 carbons across the BBB (Figure 2) (28). Mfsd2a
knockout mice exhibit an ∼60% decrease in brain DHA,

cognitive impairment, neuronal loss in the hippocampus,
microcephaly, motor dysfunction, and shorter lifespan (28,
51). Brain uptake of LPC oleate and LPC-DHA was reduced
by 80% and 90%, respectively, in Mfsd2a knockout mice
compared with wild-type mice. Mfsd2a knockout mice had
∼30% lower brain weight than wild-type mice (28). Free
DHA supplementation did not increase brain weight or
brain DHA in Mfsd2a knockout mice (28). In contrast,
DHA concentrations in heart and liver were not significantly
different between Mfds2a knockout and wild-type mice (28),
demonstrating that MFSD2A affected long-chain fatty acid
transport and deposition in the brain but not in other organs.

The MFSD2A receptor contains 12 transmembrane he-
lices and connecting loops, a conserved sodium-binding site,
a phosphate headgroup binding site, a hydrophobic cleft to
accommodate a hydrophobic hydrocarbon tail, and 3 sets
of ionic locks to stabilize the outward-open conformation
(52). Ligand docking studies showed that Lys-436 is a key
residue for LPC transport and forms a salt bridge with the
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FIGURE 3 Distribution of 21 serum LPC species as measured by
LC–tandem MS (53) in 100 women, aged 71–89 y, in the Women’s
Health and Aging Study II, a population-based study of the
two-thirds least-disabled women living in the community (RD
Semba, P Zhang, LP Fried, previously unpublished data, 2019). LPC,
lysophosphatidylcholine.

negative charge on the phosphate headgroup of the LPC
(52). In transport by MFSD2A, Quek and colleagues (52)
proposed that LPCs are “flipped” within the transporter
cavity by pivoting around Lys-436, with net transport
from the outer leaflet to the inner leaflet of the plasma
membrane.

In mice, dietary LPC eicosapentaenoate increased brain
total ω-3 fatty acid content nearly 3-fold compared with
mice receiving carrier alone or free (unesterified) eicos-
apentaenoate (54). Dietary LPC docosahexaenoate increased
brain DHA content by >2-fold after 30 d and improved
memory in mice, whereas free DHA did not alter brain
DHA content and had no effect on memory (49). MFSD2A
transports LPC with fatty acids esterified at either the sn-
1 or sn-2 position with equal efficiency into the brain (49).
Feeding studies in rats show that LPC-DHA is the preferred
carrier of DHA across the BBB, as DHA in the form of LPC
enriches DHA concentrations in brain (29). In contrast, DHA
esterified in TGs, also known as triglycerides, did not increase
DHA in brain tissues (29). After LPCs are transported into
the brain, LPCs undergo physiological processes, such as the
Lands’ cycle.

The consequences of disrupting LPC transport of long-
chain fatty acids across the BBB are demonstrated in
humans with genetic mutations in MFSD2A. In 2 families
with inactivating MFSD2A mutations in conserved residues
(p.Thr159Met, or p.Ser166Leu), affected individuals had a
lethal microcephaly syndrome associated with inadequate

uptake of LPC from the circulation (55). Patients with
MFSD2A mutations had ∼80% higher total plasma LPC
concentrations (LPC palmitate, LPC stearate, LPC oleate,
LPC linoleate) compared with healthy age-matched controls
and heterozygous parents (55). Individuals with a homozy-
gous mutation in a highly conserved MFSD2A residue,
p.Ser339Leu, had a nonlethal, progressive microcephaly
syndrome characterized by intellectual disability, spasticity,
and absent speech (56). Total plasma LPC concentrations
were 54% higher in patients homozygous for the p.Ser339Leu
variant compared with healthy controls and unaffected
siblings (56). A homozygous missense mutation in MFSD2A
(p.Pro402His) was characterized by microcephaly, hypo-
tonia, appendicular spasticity, dystonia, strabismus, and
global developmental delay; and neuroimaging showed a
large reduction in white matter volume consistent with
hypomyelination and enlarged lateral ventricles (57). Plasma
LPC concentrations were elevated in the affected children
compared with the mother and healthy controls (57).
Elevated plasma LPC concentrations have also been noted
in Mfsd2a knockout mice compared with wild-type mice
(55). The observations from both human and rodent studies
suggest that defective MFSD2A function is associated with
elevation in circulating LPCs due to failed cellular uptake
(55).

In Mfsd2a knockout mice, DHA content in brain is greatly
reduced but not absent, suggesting that there are alternative
mechanisms by which long-chain fatty acids such as DHA
can cross the BBB and supply the brain. In human plasma,
55% of DHA circulates in LPC and 45% of DHA circulates as
free fatty acids (unesterified) bound to albumin (41, 58). Free
fatty acids have been proposed to cross the BBB by passive
diffusion (59), fatty acid transport proteins (FATPs) (60–62),
or fatty acid binding proteins (FABPs) (63, 64). The BBB
is not very permeable to diffusion by long-chain fatty acids
(59). FATP1 appears to facilitate fatty acid uptake across the
BBB (62), but knockout of Fatp1 has not yet demonstrated
the necessity of FATP1 for fatty acid uptake by the brain
(64). FABP5, a cytosolic protein, can transport DHA across
the BBB (63). Fabp5 knockout mice had a modest reduction
(∼15%) in brain DHA but brain weight similar to wild-type
mice (64) and a normal phenotype similar to wild-type mice
(65). The membrane protein CD36 was a candidate for free
fatty acid transport across the BBB, but Cd36 knockout mice
had no alterations in brain PUFA concentrations (66). No
differences were found in FATP1, FABP5, or CD36 mRNA
expression in the cerebral cortex in DHA-deficient or DHA-
supplemented rats, despite a large difference in brain DHA
content, suggesting that brain DHA uptake did not require
FATP1, FABP5, or CD36 for transport (67). It has been
argued from kinetic studies in rats that nonesterified DHA
may be the major pool of DHA supplying the brain (68).
The mechanisms by which PUFAs enter the brain have been
a subject of debate; animal and clinical studies suggest that
multiple pathways may exist for PUFA import into the brain.
Of the 2 major fatty acid pools available to the brain (41, 58,
69), supplementation studies of LPCs versus free fatty acids
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(29, 54, 49, 58, 70–72), developmental studies (73), knockout
models (28), and human genetic studies (55–57) suggest that
the plasma LPC pool is the dominant source of long-chain
fatty acids for the brain.

Biological functions of LPC
The main biological functions of LPC are the transport
of long-chain fatty acids to the brain, as described in
detail above, remodeling of cell membranes, cell signaling,
and biosynthesis of cardiolipin. In membranes of different
cell types and organelles, LPCs modulate the fatty acid
composition of glycerophospholipids through the Lands’
cycle (44). Phospholipases, such as PLA2, release fatty acids
from phosphatidylcholines, where they are made available for
β-oxidation by mitochondria. LPCATs, such as LPCAT2 or
LPCAT3, catalyze the reacylation of LPCs using acyl-CoA.
The actions of PLA2 and LPCATs remodel the fatty acid
composition of membranes (Figure 2) (44) and distribute
fatty acids in LPCs in other phospholipids in the brain
(74, 75).

LPCs can serve as ligands for specific G protein–coupled
receptors such as GPR4, G2A, and GPR119 (76, 77).
Autotaxin converts LPCs to lysophosphatidic acid (LPA)
(78). There are specific LPA receptors, LPA1–6, that are
involved in growth and differentiation (79). LPCs and LPAs
modulate cell migration, adhesion, growth, insulin secretion,
glucose uptake, and other processes as their receptors are
expressed in a wide variety of tissues (79).

Cardiolipin is a unique dimeric phospholipid that is
specific to mitochondria and an essential component of
mitochondrial membranes. Cardiolipin is involved in main-
taining structural organization of mitochondrial membranes
and facilitating normal electron transport chain function and
generation of ATP. LPCs are precursors in the synthesis of
cardiolipin. Autotaxin hydrolyzes LPCs to LPAs (80, 81).
The acylation of glycerol-3-phosphate also generates LPAs,
which are acylated to phosphatidic acid (82), and converted
to nascent cardiolipin via cytidine diphosphate-glycerol,
phosphatidyl-glycerophosphate, and phosphatidylglycerol.
Nascent cardiolipin contains 4 fatty acid chains but then
undergoes cycles of structural remodeling by tafazzin (83).
Tafazzin has no substrate preference; substrate availability
influences the final form of cardiolipin in mitochondrial
inner membranes (84). Both linoleic acid (18:2n–6) and
DHA are major constituents of cardiolipin in brain (85).
Since linoleic acid is an essential fatty acid and synthesis of
DHA in the brain is negligible, it is likely that the supply of
linoleic acid and DHA for cardiolipin is dependent on the
plasma pool of LPC linoleate and LPC docosahexaenoate for
transport by MFSD2A across the BBB.

Plasma LPCs and adverse human phenotypes
Observational studies in humans show that adverse pheno-
types, chronic diseases, and systemic inflammation are gen-
erally associated with low circulating LPC concentrations.
These epidemiological observations contrast with in vitro
studies and animal models, which suggest that LPCs have

proinflammatory and proapoptotic properties (86). In vitro
studies show that LPCs have deleterious effects when there
is insufficient buffering in culture (87). Injection of excessive
amounts of LPC into mouse brain at 400 times greater
concentration than what causes toxicity in vitro induces cell
death and demyelination (87). In contrast, human studies
largely suggest that adverse biological phenotypes are asso-
ciated with low rather than excessive LPC concentrations.

Plasma LPCs decrease with age (88, 89) and are lower
in obesity (89, 90). In cross-sectional studies, circulating
LPC concentrations were lower in adults with type 2
diabetes compared with controls (90–98). Stroke patients
had lower serum LPC stearate and LPC linoleate compared
with controls (99). In prospective studies, low circulating
LPC concentrations independently predicted adverse aging-
related outcomes such as coronary artery disease (100–102),
prediabetes and diabetes (93–97), and cancer (103, 104). In
504 adults, aged ≥50 y in the Baltimore Longitudinal Study
of Aging, slow gait speed was associated with low plasma
LPCs (105). Low plasma LPCs were associated with impaired
skeletal muscle mitochondrial oxidative capacity (106). In
healthy men, regular aerobic exercise increased serum LPC
concentrations after 10 wk of intervention (107). Lower
plasma LPC concentrations were associated with greater
systemic inflammation (100, 108, 109). Overfeeding with a
high-fat diet decreased plasma LPC concentrations (110).
In contrast, consumption of a Mediterranean diet for 1 y
increased plasma LPCs after 1 y in a controlled trial (111).
LPCs could be related to adverse phenotypes that do not
directly involve the brain and MFSD2A via LPC pathways
such as the Lands’ cycle (44), cell signaling (76, 77), and
cardiolipin synthesis (112). It is notable that low circulating
LPCs are associated with several risk factors for dementia,
including obesity, physical inactivity, and diabetes (113);
systemic inflammation (114); and slow gait speed (115).

Lipid alterations in AD
Alterations in LPCs.
Lower LPC concentrations in blood, cerebrospinal fluid, and
brain tissue have been described in adults with AD compared
with controls (116–127). Although analytical platforms
varied in the LPC species that were measured, LPC linoleate
was measured in all studies and was consistently lower in
AD compared with controls (116–120). Studies of circulating
LPCs and AD have been limited by small sample sizes,
use of broad, untargeted metabolomic discovery platforms
(110, 111), limited coverage of long-chain LPC species, and
relative rather than absolute quantification of LPC species.
Cerebrospinal fluid LPC concentrations were lower in AD
compared with controls (123). Lower LPC concentrations
have been described in the prefrontal cortex (124), frontal
cortex (125), temporal cortex (125, 126), and cerebellum
(125) of patients with AD compared with controls. Lower
LPC heptadecanoate (17:0) and LPC stearate concentrations
were found in middle frontal gyrus, inferior temporal gyrus,
and cerebellum in AD compared with controls (127).
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Three abnormalities directly involving LPC metabolism
have been identified in the brain in AD. In the Lands’ cycle,
PLA2 activity, which generates LPCs from phosphatidyl-
cholines, was decreased, whereas LPCAT activity, which
recycles LPCs into intact membrane phosphatidylcholines,
was increased in the AD brain compared with control (128,
129). Increased expression of autotaxin, which converts LPC
to LPA, was reported in the frontal cortex of adults with AD
(130). The ATP-binding cassette transporter A7 (ABCA7), a
novel risk gene for AD (131), is an LPC transporter (132).
Loss-of-function variants of ABCA7 are associated with an
increased risk of AD (133–136). ABCA7 is expressed in neu-
rons and microglial cells in the cerebral cortex (132). ABCA7
expression was lower in AD brain compared with controls
(132). ABCA7 deficiency is associated with greater amyloid-
β pathology in mouse and in vitro models (137–139).

Lipid alterations in the brain.
AD is characterized by alterations in phospholipid,
sphingolipid, fatty acid, and cholesterol metabolism
in the brain (11–14). Decreased phosphatidylinositol,
phosphatidylethanolamine, and ethanolamine plasmalogen
content have been described in frontal, temporal, and
parietal cortex of AD brain compared with controls (140–
147). Ceramide is a sphingolipid that serves as both a product
of sphingomyelin or glycosphingolipid catabolism and as a
precursor to sphingolipid synthesis (148). Elevated ceramide
content was described in the frontotemporal lobe (149),
temporal cortex (139), middle frontal gyrus and superior
frontal cortex (15), and cerebellum in AD compared with
controls (15, 150). Sulfatides, a class of sphingolipids that
are abundant in the myelin sheath surrounding axons,
were reduced by 93% and 58% in gray and white matter,
respectively, in frontal, parietal, and temporal lobes, in early
AD compared with controls (150).

The adult brain contains ∼50–60% of dry weight as lipids,
of which 35% are PUFAs (17). DHA comprises approximately
half of PUFA content in the brain and contributes to
membrane fluidity with its long carbon chain and high degree
of unsaturation (17). AD is characterized by decreased DHA
content in brain phospholipids by 15–60%, depending on
brain region (18, 19). Lower DHA has been described in
phospholipids in the frontal cortex (20–22), temporal cortex
(22), and hippocampus (21, 24, 25, 144) in adults with AD
compared with controls. Lipid rafts are specialized mem-
brane microdomains that are enriched in sphingolipids and
sterols and play a role in endocytosis and signal transduction
(151). Decreased DHA has been described in lipid rafts in
the frontal cortex and entorhinal cortex in AD compared
with controls (152, 153). In addition to a structural role
in membranes, DHA has anti-inflammatory properties and
plays a role in neuroprotection. DHA contributes to clearance
of amyloid-β in the brain (154, 155). DHA and DHA-derived
metabolites such as neuroprotectin D1 (25, 156), resolvins
(157), and maresins (158) protect against neurodegeneration.
DHA reduces expression of transcription factor NF-κB (159)
and proinflammatory gene expression (160).

Can dietary LPCs and PUFAs protect against cognitive
decline and AD?
Observational studies show that a higher dietary intake of
PUFAs is associated with a lower risk of cognitive decline and
AD. In a meta-analysis of 181,580 adults from 21 studies, a
0.1-g/d increase in dietary DHA intake was associated with a
lower risk of dementia (RR: 0.86; 95% CI: 0.76, 0.96) and AD
(RR: 0.63; 95% CI: 0.51, 0.76) (161). DHA must be obtained
from the diet, and the main dietary sources of DHA are
seafood and fish as noted previously (30). The precursor of
DHA, ɑ-linolenic acid (18:3ω-3), an essential fatty acid, is
not synthesized by the body and is poorly converted to DHA
in mammals (17). In a pooled analysis of 23,688 adults, aged
≥65 y, with median follow-up of 4–9 y, higher consumption
of fish was associated with slower decline in global cognition
and memory (162).

In contrast to observational studies, clinical trials have
shown no impact of ω-3 PUFA supplementation on cognitive
decline. In a randomized, double-blind, placebo-controlled
trial of DHA supplementation in 402 older adults with mild
to moderate AD, daily DHA supplementation did not slow
the rate of cognitive decline compared with placebo over 18
mo (163). A randomized controlled trial of ω-3 PUFAs in
204 adults with mild to moderate AD showed no effect on
cognitive decline after 6 mo (164). Supplementation with ω-
3 PUFAs for 4 y duration in 1748 adults, aged 45–80 y, showed
no effect on cognitive function compared with placebo (165).
A meta-analysis of 12 controlled trials involving 6794 older
adults showed no impact of ω-3 PUFA supplementation on
cognitive decline (166).

It is important to note that the supplements used in
these clinical trials provided ω-3 PUFAs in the form of TGs.
In addition to phosphatidylcholines and LPCs, TGs are a
major dietary source of PUFAs, and in TGs, PUFA can be
distributed among the 3 positions: sn-1, sn-2, or sn-3. Fish
oil and squid oil contain DHA primarily in the sn-2 position
(167, 168). Fish are rich in DHA esterified in TGs. Fish oil
for supplements that are rich in TG-DHA is most commonly
extracted on an industrial scale by wet pressing, a process
that involves 4 steps: fish cooking, pressing, decantation,
and centrifugation. Algal oils are a rich source of DHA and
include DHASCO-T® and DHASCO-S® (DSM Nutritional
Products), which contain TGs derived from Crypthecodinium
cohnii, a dinoflagellate microalgae, and Schizochytrium spp.,
a unicellular eukaryote in the family Thraustochytriaceae,
respectively. In algal oil, DHA is randomly distributed in
any of the 3 positions of TGs (169). During digestion,
pancreatic lipase hydrolyzes TGs into monoacylglycerol and
free fatty acids in the jejunum, which are then taken up
by enterocytes and resynthesized into TGs (170). In the
blood, TGs are transported in lipoproteins and can deliver
DHA to peripheral tissues (39) but not the brain (16, 26–
29, 39, 49). ω-3 PUFA supplementation using TGs may have
had no effect on cognitive decline because the ω-3 PUFAs
were not esterified in LPCs, which transport long-chain fatty
acids across the BBB via their specific receptor MFSD2A
(28).
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TABLE 1 Questions for future research relating to LPC and Alzheimer disease1,2

• What is the fatty acid species composition of LPCs and phosphatidylcholine isomers in seafood and fish?
• In DHA-fortified eggs, which lipids (i.e., TG, phosphatidylcholine, LPC) are esterified in DHA and in what concentrations?
• Do plasma LPC fatty acid species concentrations correlate with the dietary intake of fatty acids esterified to LPC or to sn-1 phosphatidylcholines?
• What are plasma LPC concentrations in omnivores, pescatarians, vegetarians, and vegans?
• What is the specific concentration of DHA esterified at the sn-1 position in phosphatidylcholine of krill oil?
• Can LPC-DHA be synthesized from non–animal-source foods such as microalgae?
• What is the relation of the concentrations of LPC species in plasma, cerebrospinal fluid, and brain tissue in healthy adults and those with Alzheimer

disease?
• Do older adults with impaired cognition have lower plasma LPC concentrations than healthy controls?
• Are plasma LPC concentrations associated with the severity of Alzheimer disease?
• Do low plasma LPC concentrations independently predict cognitive decline and incident dementia in cognitively normal older adults?
• Can LPC-DHA supplements, phosphatidylcholine-DHA supplements, or LPC-DHA–rich foods reduce the risk of cognitive decline and Alzheimer disease in

cognitively normal older adults?
• Can LPC-DHA supplements, phosphatidylcholine-DHA supplements, or LPC-DHA–rich foods reduce the risk of progression to Alzheimer disease in adults

diagnosed with mild cognitive impairment?

1LPC, lysophosphatidylcholine; TG, triacylglycerol.
2LPC measurements made using highly sensitive, specific, and accurate liquid chromatography-tandem mass spectrometry platforms that provide targeted in-depth coverage of
LPC species

Can diet or supplements be optimized to increase the
bioavailability of DHA to the brain?
As noted previously, fish contain DHA esterified in LPC or
in the sn-2 position of phosphatidylcholines, which would
have higher bioavailability to the brain (Figure 2). To date,
there have been no large, controlled, randomized trials that
evaluate long-term fish consumption as an intervention to
reduce cognitive decline in older adults. Animal brain is a
rich dietary source of DHA, but consumption is presently
limited to certain cuisines and cultures. In krill oil, processed
from Antarctic krill (Euphasia superba), DHA is found
mainly esterified in phosphatidylcholine, bound at either the
sn-1 or sn-2 position (35). Krill oil may potentially have DHA
that is bioavailable to the brain using LPC as a carrier if a
substantial portion of DHA in krill oil is esterified at the sn-
1 position. Some commercial supplements of ω-3 PUFAs are
derived from fish roe, which contain some DHA esterified
in the sn-1 position (34). Hen egg yolk normally contains a
small amount of DHA, but the DHA content of egg yolk can
be increased substantially through fortification by feeding
fish oil or algal powder to laying hens (171–174). The specific
lipids in which DHA is esterified in fortified egg yolks have
not been well characterized. Cow milk normally contains
little DHA. The DHA content of milk can be increased by
adding fish oil to cow feed (175), and some commercial cow
milk is available that has been fortified with DHA in the form
of TGs in microalgal oil.

A synthetic preparation of oral LPC-DHA, AceDoPC®

(LipTher), contains DHA esterified in the sn-2 position of
LPC (176). The sn-1 position is blocked to prevent acyl
migration of DHA from sn-2 to sn-1 (176). Acyl migration
of fatty acids can occur spontaneously from sn-2 to sn-
1 under physiological conditions. However, a recent study
suggests that LPC with DHA esterified at sn-2 is stable
without substantial acyl migration to sn-1 (177). Since
MFSD2A transports LPC with fatty acids at either the sn-
1 or sn-2 across the BBB with equal efficiency (49), it is

unclear whether this proprietary form of LPC-DHA will
confer any advantage over naturally occurring LPC-DHA in
the bioavailability of DHA to the brain. A dietary oil rich
in LPC-DHA can be produced by treating squid oil with
hydrolysis (178). Oral administration of this LPC-DHA–
rich oil increased DHA content in the hippocampus in an
experimental rat model (178).

The recent studies of LPCs raise potential concerns for
vegetarians and vegans, because DHA is absent from vegan
diets and is present only in limited amounts in vegetarian
diets (179). Plasma, erythrocyte, and tissue concentrations
of DHA are lower in vegetarians than in nonvegetarians
(179). Algal oils, a rich nonanimal source of DHA, are used
by some vegetarians and vegans (180); however, DHA is
esterified in TGs in algal oils. Under conditions of low dietary
intake of DHA, there may be compensatory increases in
alternative pathways of DHA transport into the brain, such
as passive diffusion (59), FATP1 (62), or FABP5 (64), but the
importance of these pathways in humans has not been well
characterized.

Conclusions
Animal and clinical studies suggest that the pool of cir-
culating LPCs is a major source of long-chain fatty acids
such as DHA for the brain. A low circulating pool of
LPCs may play an important role in the pathobiology of
AD. There are still many unanswered epidemiological and
translational research questions that could provide greater
insight into LPCs and AD (Table 1), including the LPC
composition of seafood, fish, and fortified foods. Whether
serum LPC concentrations are associated with dietary intake
of LPC-rich foods, such as fish that contain high LPC-
DHA content, has not been well characterized. Previous
studies of circulating LPC and AD in humans have utilized
broad, untargeted discovery metabolomic platforms (116–
120). Highly sensitive, specific, and accurate LC–tandem MS
assays that provide targeted in-depth coverage of LPC species
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in biofluids and tissues (53, 181) could be applied in future
clinical studies, epidemiological studies of cognitive decline
and AD, and in the analysis of foods. The relation of serum
LPC concentrations with cognitive decline and AD has not
been well characterized in human studies. Whether adults
with low serum LPC concentrations are at greater risk of
developing cognitive decline and AD remains a major gap
in knowledge. Preventing and treating cognitive decline and
AD remain challenging. Dietary and/or lifestyle changes have
shown promise in reversing or improving cognitive decline
(182, 183). The LPC pathway is a promising area for future
investigators to identify modifiable risk factors for AD.
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